

 Department of Electronics and Communication
Engineering

Sub Code/Name: BEC5L6 -MICROPROCESSOR AND MICROCONTROLLER
LAB

Name : ……………………………………

Reg No : ……………………………………

Branch : ……………………………………

Year & Semester : ……………………………………

LIST OF EXPERIMENTS

Sl No Experiments Page No

1
Programming with 8085 – 8-bit/16-bit
addition/subtraction

2
Programming with 8085 – 8-bit/16-bit
multiplication/ division using repeated
addition/subtraction

3 Programming with 8085 – 8-bit/16-bit
Ascending/Descending order

4
Programming with 8085 – 8-bit/16-bit
Largest/smallest number

5 Programming with 8085- code conversion, decimal
arithmetic, bit manipulations

6 Programming with 8085 – matrix multiplication,
floating point operations

7 Programming with 8086 – String manipulation,
search, find and replace, copy operations, sorting.

8 Interfacing with 8085/8086 – 8255, 8253

9 Interfacing with 8085/8086 – 8279, 825

10 8051 Microcontroller based experiments – Simple
assembly language programs

 8051 Microcontroller based experiments – simple
control applications

INDEX

Expt. Date Name of the Experiment Marks Staff SIGN

1. INTRODUCTION TO 8085

INTEL 8085 is one of the most popular 8-bit microprocessor capable of addressing 64

KB of memory and its architecture is simple. The device has 40 pins, requires +5 V

power supply and can operate with 3MHz single phase clock.

ALU (Arithmetic Logic Unit):

The 8085A has a simple 8-bit ALU and it works in coordination with the accumulator,

temporary registers, 5 flags and arithmetic and logic circuits. ALU has the capability

of performing several mathematical and logical operations. The temporary registers are

used to hold the data during an arithmetic and logic operation. The result is stored in

the accumulator and the flags are set or reset according to the result of the operation.

The flags are affected by the arithmetic and logic operation. They are as follows:

 Sign flag

After the execution of the arithmetic - logic operation if the bit D7 of the result

is 1, the sign flag is set. This flag is used with signed numbers. If it is 1,

it is a negative number and if it is 0, it is a positive number.

 Zero flag

The zero flag is set if the ALU operation results in zero. This flag is modified by

the result in the accumulator as well as in other registers.

 Auxillary carry flag

In an arithmetic operation when a carry is generated by digit D3 and passed on

to D4, the auxillary flag is set.

 Parity flag

After arithmetic – logic operation, if the result has an even number of 1’s the

flag is set. If it has odd number of 1’s it is reset.

 Carry flag

If an arithmetic operation results in a carry, the carry flag is set.

The carry flag also serves as a borrow flag for subtraction.

Timing and control unit

 This unit synchronizes all the microprocessor operation with a clock and

generates the control signals necessary for communication between the

microprocessor and peripherals. The control signals RD (read) and WR (write)

indicate the availability of data on the data bus.

Instruction register and decoder

 The instruction register and decoder are part of the ALU. When an instruction is

fetched from memory it is loaded in the instruction register. The decoder decodes

the instruction and establishes the sequence of events to follow.

Register array

 The 8085 has six general purpose registers to store 8-bit data during program

execution. These registers are identified as B, C, D, E, H and L. they can be

combined as BC, DE and HL to perform 16-bit operation.

Accumulator

 Accumulator is an 8-bit register that is part of the ALU. This register is used to

store 8-bit data and to perform arithmetic and logic operation. The result of an

operation is stored in the accumulator.

Program counter

The program counter is a 16-bit register used to point to the memory address of

the next instruction to be executed.

Stack pointer

It is a 16-bit register which points to the memory location in R/W memory,

called the Stack.

Communication lines

8085 microprocessor performs data transfer operations using three communication

lines called buses. They are address bus, data bus and control bus.

 Address bus – it is a group of 16-bit lines generally identified as A0 –

A15. The address bus is unidirectional i.e., the bits flow in one direction

from microprocessor to the peripheral devices. It is capable of

addressing 216 memory locations.

 Data bus – it is a group of 8 lines used for data flow and it is

bidirectional. The data ranges from 00 – FF.

 Control bus – it consist of various single lines that carry synchronizing

signals. The microprocessor uses such signals for timing purpose.

Ex No:1(A)

Date:

8 BIT DATA ADDITION

AIM:

 To add two 8 bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the first number from memory in accumulator.
3. Get the second number and add it to the accumulator.
4. Store the answer at another memory location.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.
4101
4102 LXI H, 4500 Initialize HL reg. to

4500 4103
4104
4105 MOV A, M Transfer first data to

accumulator
4106 INX H Increment HL reg. to

point next memory
Location.

4107 ADD M Add first number to
acc. Content.

4108 JNC L1 Jump to location if
result does not yield

carry.
4109
410A
410B INR C Increment C reg.
410C L1 INX H Increment HL reg. to

point next memory
Location.

410D MOV M, A Transfer the result from
acc. to memory.

410E INX H Increment HL reg. to
point next memory

Location.
410F MOV M, C Move carry to memory
4110 HLT Stop the program

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

[A] [A]+[M]

[HL] [HL]+1

STOP

[HL] [HL]+1

[M] [A]

[C] 00H

[M] [C]

[HL] [HL]+1

Is there a

 Carry ?

[C] [C]+1

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are added and the result stored at 4502 &
4503.

Ex No:1(B)

Date:
8 BIT DATA SUBTRACTION

AIM:
 To Subtract two 8 bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the first number from memory in accumulator.
3. Get the second number and subtract from the accumulator.
4. If the result yields a borrow, the content of the acc. is complemented and 01H is

added to it (2’s complement). A register is cleared and the content of that reg. is
incremented in case there is a borrow. If there is no borrow the content of the
acc. is directly taken as the result.

5. Store the answer at next memory location.
PROGRAM:
ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.
4101
4102 LXI H, 4500 Initialize HL reg. to

4500 4103
4104
4105 MOV A, M Transfer first data to

accumulator
4106 INX H Increment HL reg. to

point next mem.
Location.

4107 SUB M Subtract first number
from acc. Content.

4108 JNC L1 Jump to location if
result does not yield

borrow.
4109
410A
410B INR C Increment C reg.
410C CMA Complement the Acc.

content
410D ADI 01H Add 01H to content of

acc. 410E
410F L1 INX H Increment HL reg. to

point next mem.
Location.

4110 MOV M, A Transfer the result from
acc. to memory.

4111 INX H Increment HL reg. to
point next mem.

Location.
4112 MOV M, C Move carry to mem.
4113 HLT Stop the program

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

Is there a

 Borrow ?

[A] [A]-[M]

[HL] [HL]+1

[C] 00H

[C] [C]+1

STOP

[HL] [HL]+1

[M] [A]

[M] [C]

[HL] [HL]+1

Complement [A]

Add 01H to [A]

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

RESULT:

Thus the 8 bit numbers stored at 4500 &4501 are subtracted and the result stored at
4502 & 4503

Ex No:2(A)

Date:

16 BIT DATA ADDITION
AIM:

 To add two 16-bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the first number from memory and store in Register pair.
3. Get the second number in memory and add it to the Register pair.
4. Store the sum & carry in separate memory locations.

PROGRAM:

ADDRESS

OPCODE LABEL MNEMONICS OPERAND COMMENT

8000 START LHLD 8050H Load the augend in DE
pair through HL pair. 8001

8002
8003 XCHG
8004 LHLD 8052H Load the addend in HL

pair. 8005
8006
8007 MVI A, 00H Initialize reg. A for

carry 8008
8009 DAD D Add the contents of HL

Pair with that of DE
pair.

800A JNC LOOP If there is no carry, go
to the instruction
labeled LOOP.

800B
800C
800D INR A Otherwise increment

reg. A
800E LOOP SHLD 8054H Store the content of HL

Pair in 8054H(LSB of
sum)

800F
8010
8011 STA 8056H Store the carry in

8056H through Acc.
(MSB of sum).

8012
8013
8014 HLT Stop the program.

.

FLOW CHART:

 NO

 YES

START

[DE] [HL]

[L] [8052H]

[H] [8053H]

[A] 00H

[HL] [HL]+[DE]

[L] [8050 H]

[H] [8051 H]

Is there a

 Carry?

STOP

[8054] [L]

[8055] [H]

[A] [A]+1

[8056] [A]

OBSERVATION:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

8050H 8054H
8051H 8055H
8052H 8056H
8053H

RESULT:

Thus an ALP program for 16-bit addition was written and executed in 8085p using
special instructions

Ex No:2(B)

Date:

16 BIT DATA SUBTRACTION
AIM:

 To subtract two 16-bit numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the subtrahend from memory and transfer it to register pair.
3. Get the minuend from memory and store it in another register pair.
4. Subtract subtrahend from minuend.
5. Store the difference and borrow in different memory locations.

. PROGRAM:

ADDRESS OPCODE LABEL MNEMO

NICS
OPER
AND

COMMENTS

8000 START MVI C, 00 Initialize C reg.
8001
8002 LHLD 8050H Load the subtrahend in DE

reg. Pair through HL reg.
pair.

8003
8004
8005 XCHG
8006 LHLD 8052H Load the minuend in HL reg.

Pair. 8007
8008
8009 MOV A, L Move the content of reg. L to

Acc.
800A SUB E Subtract the content of reg.

E from that of acc.
800B MOV L, A Move the content of Acc. to

reg. L
800C MOV A, H Move the content of reg. H

to Acc.
800D SBB D Subtract content of reg. D

with that of Acc.
800E MOV H, A Transfer content of acc. to

reg. H
800F SHLD 8054H Store the content of HL pair

in memory location 8504H. 8010
8011
8012 JNC NEXT If there is borrow, go to the

instruction labeled NEXT. 8013
8014
8015 INR C Increment reg. C
8016 NEXT MOV A, C Transfer the content of reg. C

to Acc.
8017 STA 8056H Store the content of acc. to

8018 the memory location 8506H
8019
801A HLT Stop the program execution.

FLOW CHART:

 NO

 YES

OBSERVATION:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

8050H 8054H
8051H 8055H
8052H 8056H
8053H

START

[DE] [HL]

[L] [8052H]

[H] [8053H]

[HL] [HL]-[DE]

[L] [8050 H]

[H] [8051 H]

Is there a

 borrow?

STOP

[8054] [L]

[8055] [H]

[C] [C]+1

[8056] [C]

RESULT:

Thus an ALP program for subtracting two 16-bit numbers was written and executed

Ex No:3(A)

Date:

ASCENDING ORDER

AIM:
 To sort the given number in the ascending order using 8085 microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.
 2. Compare the first two numbers and if the first number is larger than second then I
interchange the number.
3. If the first number is smaller, go to step 4
 4. Repeat steps 2 and 3 until the numbers are in required order

PROGRAM:
ADDR

E
SS

OPCO
DE

LABEL MNEM
ONICS

OPER
AND

COMMENTS

8000 MVI B,04 Initialize B reg with number
of comparisons (n-1) 8001

8002 LOOP 3 LXI H,8100 Initialize HL reg. to
8100H 8003

8004
8005 MVI C,04 Initialize C reg with no. of

comparisons(n-1) 8006
8007 LOOP2 MOV A,M Transfer first data to acc.
8008 INX H Increment HL reg. to point

next memory location
8009 CMP M Compare M & A
800A JC LOOP1 If A is less than M then go to

loop1 800B
800C
800D MOV D,M Transfer data from M to D reg
800E MOV M,A Transfer data from acc to M
800F DCX H Decrement HL pair
8010 MOV M,D Transfer data from D to M
8011 INX H Increment HL pair
8012 LOOP1 DCR C Decrement C reg
8013 JNZ LOOP2 If C is not zero go to loop2
8014
8015
8016 DCR B Decrement B reg
8017 JNZ LOOP3 If B is not Zero go to loop3
8018
8019
801A HLT Stop the program

FLOWCHART:

 YES

 NO

 NO
 YES

 NO

 YES

IS

A

[B] [B]-1

IS

 STOP

[B] 04H

[HL]

[A] [HL]

[HL [HL] + 1

IS

[D] [HL]

[HL] [A]

[HL] [HL] -

[HL] [D]

[HL] [HL] + 1

[C] [C] – 01 H

A

[C] 04H

 START

OBSERVATION:

INPUT OUTPUT
MEMORY

LOCATION
DATA MEMORY

LOCATION
DATA

8100 8100
8101 8101
8102 8102
8103 8103
8104 8104

RESULT: Thus the ascending order program is executed and thus the numbers are
arranged in ascending order

Ex No:3(A)

Date:
DESCENDING ORDER

AIM:
 To sort the given number in the descending order using 8085 microprocessor.

ALGORITHM:

 1. Get the numbers to be sorted from the memory locations.
 2. Compare the first two numbers and if the first number is smaller than second then I
interchange the number.
3. If the first number is larger, go to step 4
 4. Repeat steps 2 and 3 until the numbers are in required order
PROGRAM:
ADDRE

SS
OPCO

DE
LABEL MNEM

ONICS
OPER
AND

COMMENTS

8000 MVI B,04 Initialize B reg with number
of comparisons (n-1) 8001

8002 LOOP 3 LXI H,8100 Initialize HL reg. to
8100H 8003

8004
8005 MVI C,04 Initialize C reg with no. of

comparisons(n-1) 8006
8007 LOOP2 MOV A,M Transfer first data to acc.
8008 INX H Increment HL reg. to point

next memory location
8009 CMP M Compare M & A
800A JNC LOOP1 If A is greater than M then

go to loop1 800B
800C
800D MOV D,M Transfer data from M to D

reg
800E MOV M,A Transfer data from acc to M
800F DCX H Decrement HL pair
8010 MOV M,D Transfer data from D to M
8011 INX H Increment HL pair
8012 LOOP1 DCR C Decrement C reg
8013 JNZ LOOP2 If C is not zero go to loop2
8014
8015
8016 DCR B Decrement B reg
8017 JNZ LOOP3 If B is not Zero go to loop3
8018
8019
801A HLT Stop the program

FLOWCHART:

 NO

 YES

NO

 YES

 YES NO

IS

A

[B] [B]-1

IS

 STOP

[B] 04H

[HL]

[A] [HL]

[HL [HL] + 1

IS

[D] [HL]

[HL] [A]

[HL] [HL] - 1

[HL] [D]

[HL] [HL] + 1

[C] [C] – 01 H

A

[C] 04H

 START

OBSERVATION:

INPUT OUTPUT
MEMORY

LOCATION
DATA MEMORY

LOCATION
DATA

8100 8100
8101 8101
8102 8102
8103 8103
8104 8104

RESULT:

 Thus the descending order program is executed and thus the numbers are
arranged in descending order.

Ex No:4(A)

Date:
6(A). LARGEST ELEMENT IN AN ARRAY

AIM:

 To find the largest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next

element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

PROGRAM:

ADDRE

SS
OPCO

DE
LABEL MNEM

ONICS
OPER
AND

COMMENTS

8001 LXI H,8100 Initialize HL reg. to
8100H 8002

8003
8004 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 8005
8006 MOV A,M Transfer first data to acc.
8007 LOOP1 INX H Increment HL reg. to point

next memory location
8008 CMP M Compare M & A
8009 JNC LOOP If A is greater than M then go

to loop 800A
800B
800C MOV A,M Transfer data from M to A reg
800D LOOP DCR B Decrement B reg
800E JNZ LOOP1 If B is not Zero go to loop1
800F
8010
8011 STA 8105 Store the result in a memory

8012 location.
8013
8014 HLT Stop the program

FLOW CHART:

 NO

 YES

 NO

 YES

[B] 04H

[HL] [8100H]

[A] [HL]

[HL [HL] + 1

IS

[A] < [HL]?

[A] [HL]

[8105] [A]

 START

[B] [B]-1

IS

[B] = 0?

 STOP

OBSERVATION:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA
8100 8105
8101
8102
8103
8104

RESULT:

 Thus the largest number in the given array is found out.

Ex No:4(B)

Date:
 SMALLEST ELEMENT IN AN ARRAY

AIM:

 To find the smallest element in an array.

ALGORITHM:

1. Place all the elements of an array in the consecutive memory locations.

2. Fetch the first element from the memory location and load it in the accumulator.

3. Initialize a counter (register) with the total number of elements in an array.

4. Decrement the counter by 1.

5. Increment the memory pointer to point to the next element.

6. Compare the accumulator content with the memory content (next

element).

7. If the accumulator content is smaller, then move the memory content

(largest element) to the accumulator. Else continue.

8. Decrement the counter by 1.

9. Repeat steps 5 to 8 until the counter reaches zero

10. Store the result (accumulator content) in the specified memory location.

PROGRAM:
ADDRE

SS
OPCO

DE
LABEL MNEM

ONICS
OPER
AND

COMMENTS

8001 LXI H,8100 Initialize HL reg. to
8100H 8002

8003
8004 MVI B,04 Initialize B reg with no. of

comparisons(n-1) 8005
8006 MOV A,M Transfer first data to acc.
8007 LOOP1 INX H Increment HL reg. to point

next memory location
8008 CMP M Compare M & A
8009 JC LOOP If A is lesser than M then go

to loop 800A
800B
800C MOV A,M Transfer data from M to A reg
800D LOOP DCR B Decrement B reg
800E JNZ LOOP1 If B is not Zero go to loop1
800F
8010
8011 STA 8105 Store the result in a memory

location. 8012
8013
8014 HLT Stop the program

FLOW CHART:

 YES

 NO

 NO

 YES

[B] 04H

[HL] [8100H]

[A] [HL]

[HL [HL] + 1

IS

[A] < [HL]?

[A] [HL]

[8105] [A]

 START

[B] [B]-1

IS

[B] = 0?

 STOP

OBSERVATION:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA
8100 8105
8101
8102
8103
8104

RESULT:

 Thus the smallest number in the given array is found out.

Ex No:5(A)

Date:
CODE CONVERSION –DECIMAL TO HEX

AIM:

 To convert a given decimal number to hexadecimal.

ALGORITHM:

1. Initialize the memory location to the data pointer.
2. Increment B register.
3. Increment accumulator by 1 and adjust it to decimal every time.
4. Compare the given decimal number with accumulator value.
5. When both matches, the equivalent hexadecimal value is in B register.
6. Store the resultant in memory location.

PROGRAM:

ADDRE

SS
OPCO

DE
LABEL MNEM

ONICS
OPER
AND

COMMENTS

8000 LXI H,8100 Initialize HL reg. to
8100H 8001

8002
8003 MVI A,00 Initialize A register.
8004
8005 MVI B,00 Initialize B register..
8006
8007 LOOP INR B Increment B reg.
8008 ADI 01 Increment A reg
8009
800A DAA Decimal Adjust Accumulator
800B CMP M Compare M & A
800C JNZ LOOP If acc and given number are

not equal, then go to LOOP 800D
800E
800F MOV A,B Transfer B reg to acc.
8010 STA 8101 Store the result in a memory

location. 8011
8012
8013 HLT Stop the program

FLOWCHART:

 NO

 YES

 START

HL 4500H

A 00

B 00H

A A +1

Decimal adjust
accumulator

B B+1

A B

 Is

A=M?

8101 A

Stop

RESULT:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

 8100 8101

RESULT:

Thus an ALP program for conversion of decimal to hexadecimal was written
and executed.

Ex No:5(B)

Date:
CODE CONVERSION –HEXADECIMAL TO DECIMAL

AIM:
 To convert a given hexadecimal number to decimal.
ALGORITHM:

1. Initialize the memory location to the data pointer.
2. Increment B register.
3. Increment accumulator by 1 and adjust it to decimal every time.
4. Compare the given hexadecimal number with B register value.
5. When both match, the equivalent decimal value is in A register.
6. Store the resultant in memory location.

PROGRAM:

ADDRE
SS

OPCO
DE

LABEL MNEM
ONICS

OPER
AND

COMMENTS

8000 LXI H,8100 Initialize HL reg. to
8100H 8001

8002
8003 MVI A,00 Initialize A register.
8004
8005 MVI B,00 Initialize B register.
8006
8007 MVI C,00 Initialize C register for carry.
8008
8009 LOOP INR B Increment B reg.
800A ADI 01 Increment A reg
800B
800C DAA Decimal Adjust Accumulator
800D JNC NEXT If there is no carry go to

NEXT. 800E
800F
8010 INR C Increment c register.
8011 NEXT MOV D,A Transfer A to D
8012 MOV A,B Transfer B to A
8013 CMP M Compare M & A
8014 MOV A,D Transfer D to A
8015 JNZ LOOP If acc and given number are

not equal, then go to LOOP 8016
8017
8018 STA 8101 Store the result in a memory

location. 8019
801A
801B MOV A,C Transfer C to A
801C STA 8102 Store the carry in another

memory location. 801D
801E
801F HLT Stop the program

FLOWCHART:

 NO

 YES

Stop

 START

HL 8100H

A 00

B 00H

A A +1

Decimal adjust
accumulator

B B+1

D A, A B,

 Is

A=M?

8101 A, A C

8102 A

C 00H

C C+1

 Is there
carry?

RESULT:

INPUT OUTPUT
ADDRESS DATA ADDRESS DATA

8100 8101
8102

RESULT:

Thus an ALP program for conversion of hexadecimal to decimal was written
and executed.

Ex No: 5(C)

Date:
BINARY ARITHMETIC-BCD ADDITION

AIM:

 To add two 8 bit BCD numbers stored at consecutive memory locations.

ALGORITHM:

1. Initialize memory pointer to data location.
2. Get the first number from memory in accumulator.
3. Get the second number and add it to the accumulator
4. Adjust the accumulator value to the proper BCD value using DAA instruction.
5. Store the answer at another memory location.

PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI C, 00 Clear C reg.
4101
4102 LXI H, 4500 Initialize HL reg. to

4500 4103
4104
4105 MOV A, M Transfer first data to

accumulator
4106 INX H Increment HL reg. to

point next memory
Location.

4107 ADD M Add first number to
acc. Content.

4108 DAA Decimal adjust
accumulator

4109 JNC L1 Jump to location if
result does not yield

carry.
410A
410B
410C INR C Increment C reg.
410D L1 INX H Increment HL reg. to

point next memory
Location.

410E MOV M, A Transfer the result from
acc. to memory.

410F INX H Increment HL reg. to
point next memory

Location.
4110 MOV M, C Move carry to memory
4111 HLT Stop the program

FLOW CHART:

 NO

 YES

START

[HL] 4500H

[A] [M]

[A] [A]+[M]

Decimal Adjust Accumulator

[HL] [HL]+1

STOP

[HL] [HL]+1

[M] [A]

[C] 00H

[M] [C]

[HL] [HL]+1

Is there a

 Carry ?

[C] [C]+1

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

RESULT:

Thus the 8 bit BCD numbers stored at 4500 &4501 are added and the result stored at
4502 & 4503.

Ex No: 5(D)

Date:
BCD SUBTRACTION

AIM:

 To Subtract two 8 bit BCD numbers stored at consecutive memory locations.

ALGORITHM:

1. Load the minuend and subtrahend in two registers.
2. Initialize Borrow register to 0.
3. Take the 100’s complement of the subtrahend.
4. Add the result with the minuend which yields the result.
5. Adjust the accumulator value to the proper BCD value using DAA

instruction. If there is a carry ignore it.
6. If there is no carry, increment the carry register by 1
7. Store the content of the accumulator (result)and borrow register in the

specified memory location
PROGRAM:

ADDRESS OPCODE LABEL MNEMONICS OPERAND COMMENT

4100 START MVI D, 00 Clear D reg.
4101
4102 LXI H, 4500 Initialize HL reg. to

4500 4103
4104
4105 MOV B, M Transfer first data to

accumulator
4106 INX H Increment HL reg. to

point next mem.
Location.

4107 MOV C, M Move second no. to B
reg.

4108 MVI A, 99 Move 99 to the
Accumulator 4109

410A SUB C Subtract [C] from acc.
Content.

410B INR A Increment A register
410C ADD B Add [B] with [A]
410D DAA Adjust Accumulator

value for Decimal digits
410E JC LOOP Jump on carry to loop
410F
4110
4111 INR D Increment D reg.
4112 LOOP INX H Increment HL register

pair
4113 MOV M , A Move the Acc.content to

the memory location

4114 INX H Increment HL reg. to
point next mem.

Location.
4115 MOV M, D Transfer D register

content to memory.
4116 HLT Stop the program

FLOW CHART:

 YES

 NO

START

HL HL+ 1

C M

[A] [A] – [C]

[A] [A]+1

Is there a

 Carry ?

[A] [A]+[B]

DAA

[D] 00H

HL 4500

STOP

[D] [D]+1

[4502] A

[4503] D

[HL] [HL]+1

OBSERVATION:

INPUT OUTPUT
4500 4502
4501 4503

RESULT:

Thus the 8 bit BCD numbers stored at 4500 &4501 are subtracted and the result stored
at 4502 & 4503.

Ex No: 6(A)

Date:
2 X 2 MATRIX MULTIPLICATION

AIM:

 To perform the 2 x 2 matrix multiplication.

ALGORITHM:

1. Load the 2 input matrices in the separate address and initialize the HL and the
DE register pair with the starting address respectively.

2. Call a subroutine for performing the multiplication of one element of a matrix
with the other element of the other matrix.

3. Call a subroutine to store the resultant values in a separate matrix.

PROGRAM:

ADDRESS OPCOD

E
LABEL MNEM

ONICS
OPERAN
D

COMMENT

8100 MVI C, 00 Clear C reg.
8101
8102 LXI H, 8500 Initialize HL reg. to

4500 8103
8104
8105 LOOP2 LXI D, 8600 Load DE register pair
8106
8107
8108 CALL MUL Call subroutine MUL
8109
810A
810B MOV B,A Move A to B reg.
810C INX H Increment HL register pair .
810D INX D Increment DE register pair
810E INX D Increment DE register pair
810F CALL MUL Call subroutine MUL
8110
8111
8112 ADD B Add [B] with [A]
8113 CALL STORE Call subroutine STORE
8114
8115
8116 DCX H Decrement HL register pair
8117 DCX D Decrement DE register pair
8118 CALL MUL Call subroutine MUL
8119
811A
811B MOV B,A Transfer A reg content to B reg.

811C INX H Increment HL register pair
811D INX D Increment DE register pair
811E INX D Increment DE register pair
811F CALL MUL Call subroutine MUL
8120
8121
8122 ADD B Add A with B
8123 CALL STORE Call subroutine MUL
8124
8125
8126 MOV A,C Transfer C register content to Acc.
8127 CPI 04 Compare with 04 to check whether

all elements are multiplied. 8128
8129 JZ LOOP1 If completed, go to loop1
812A
812B
812C INX H Increment HL register Pair.
812D JMP LOOP2 Jump to LOOP2.
812E
812F
8130 LOOP1 HLT Stop the program.
8131 MUL LDAX D Load acc from the memory location

pointed by DE pair.
8132 MOV D,A Transfer acc content to D register.
8133 MOV H,M Transfer from memory to H register.
8134 DCR H Decrement H register.
8135 JZ LOOP3 If H is zero go to LOOP3.
8136
8137
8138 LOOP4 ADD D Add Acc with D reg
8139 DCR H Decrement H register.
813A JNZ LOOP4 If H is not zero go to LOOP4.
813B
813C
813D LOOP3 MVI H,85 Transfer 85 TO H register.
813E
813F MVI D,86 Transfer 86 to D register.
8140
8141 RET Return to main program.
8142 STORE MVI B,87 Transfer 87 to B register.
8143
8144 STAX B Load A from memory location

pointed by BC pair.
8145 INR C Increment C register.
8146 RET Return to main program.

FLOW CHART:

 YES

 NO

HL HL+1

DE DE+1; DE DE+1

Is
A=04H?

Increment HL
reg. pair

C 00H

DE 8600H

HL HL+1

DE DE+1; DE DE+1

B A

A A+B

START

HL HL-1

DE DE-1;

B A

A

Call subroutine

MUL

Call subroutine

 STORE

A

Call subroutine

MUL

Call subroutine

MUL

A A+B

Call subroutine

 STORE

Call subroutine

MUL

A C

B

B
STOP

 YES

 NO

 NO

 YES

MUL

H H- 1

Is H=0 ?

[A] [[DE]]

D A

[D] [D]+1

[H] 85; [D] 86

H H- 1

Is H=0 ?

RET

STORE

B 87

[A] [[BC]]

C C+ 1

RET

OBSERVATION:

INPUT OUTPUT
4500 4600 4700
4501 4601 4701
4502 4602 4702
4503 4603 4703

RESULT:

Thus the 2 x 2 matrix multiplication is performed and the result is stored at 4700,4701 ,
4702 & 4703.

Ex No: 7(A)

Date:

1.8086 STRING MANIPULATION – SEARCH A WORD

AIM:

To search a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the

ending address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP to

search a word from string.

5. If a match is found (z=1), display 01 in destination address. Otherwise,

display 00 in destination address.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, 15H

 MOV SI, OFFSET LIST

 MOV DI, DEST

 MOV CX, COUNT

 MOV AX, 00

 CLD

REP SCASW

 JZ LOOP

 MOV AX, 01

LOOP MOV [DI], AX

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H

OUTPUT:

 3000 01

RESULT:

 A word is searched and the count of number of appearances is displayed.

Ex No: 7(B)

Date:

2.8086 STRING MANIPULATION –FIND AND REPLACE A WORD

AIM:

To find and replace a word from a string.

ALGORITHM:

1. Load the source and destination index register with starting and the

ending address respectively.

2. Initialize the counter with the total number of words to be copied.

3. Clear the direction flag for auto incrementing mode of transfer.

4. Use the string manipulation instruction SCASW with the prefix REP

to search a word from string.

5. If a match is found (z=1), replace the old word with the current word

in destination address. Otherwise, stop.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 15H, 19H, 02H

REPLACE EQU 30H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV AX, 15H

 MOV SI, OFFSET LIST

 MOV CX, COUNT

 MOV AX, 00

 CLD

REP SCASW

 JNZ LOOP

 MOV DI, LABEL LIST

 MOV [DI], REPLACE

LOOP MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 15H, 19H, 02H

OUTPUT:

LIST: 53H, 30H, 19H, 02H

RESULT:

A word is found and replaced from a string.

Ex No: 7(C)

Date:
3. 8086 STRING MANIPULATION – COPY A STRING

AIM:

To copy a string of data words from one location to the other.

ALGORITHM:

6. Load the source and destination index register with starting and the

ending address respectively.

7. Initialize the counter with the total number of words to be copied.

8. Clear the direction flag for auto incrementing mode of transfer.

9. Use the string manipulation instruction MOVSW with the prefix REP to

copy a string from source to destination.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

SOURCE EQU 2000H

DEST EQU 3000H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV ES, AX

 MOV SI, SOURCE

 MOV DI, DEST

 MOV CX, COUNT

 CLD

REP MOVSW

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT: OUTPUT:

2000 48 3000 48

2001 84 3001 84

2002 67 3002 67

2003 90 3003 90

2004 21 3004 21

RESULT:

 A string of data words is copied from one location to other.

Ex No: 7(D)

Date:
4.8086 STRING MANIPULATION – SORTING

AIM:

To sort a group of data bytes.

ALGORITHM:

 Place all the elements of an array named list (in the consecutive

memory locations).

 Initialize two counters DX & CX with the total number of elements

in the array.

 Do the following steps until the counter B reaches 0.

o Load the first element in the accumulator

o Do the following steps until the counter C reaches 0.

1. Compare the accumulator content with the next element
present in the next memory location. If the accumulator
content is smaller go to next step; otherwise, swap the
content of accumulator with the content of memory
location.

2. Increment the memory pointer to point to the next
element.

3. Decrement the counter C by 1.
 Stop the execution.

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 53H, 25H, 19H, 02H

COUNT EQU 04H

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

 MOV DS, AX

 MOV DX, COUNT-1

LOOP2: MOV CX, DX

 MOV SI, OFFSET LIST

AGAIN: MOV AX, [SI]

 CMP AX, [SI+2]

 JC LOOP1

 XCHG [SI +2], AX

 XCHG [SI], AX

LOOP1: ADD SI, 02

 LOOP AGAIN

 DEC DX

 JNZ LOOP2

 MOV AH, 4CH

 INT 21H

CODE ENDS

END START

INPUT:

LIST: 53H, 25H, 19H, 02H

OUTPUT:

 LIST: 02H, 19H, 25H, 53H

RESULT:

 A group of data bytes are arranged in ascending order.

Ex No: 8(A)

Date:
1. INTERFACING 8255 WITH 8085

AIM:

 To interface programmable peripheral interface 8255 with 8085 and study its

characteristics in mode0, mode1 and BSR mode.

APPARATUS REQUIRED:

 8085 p kit, 8255Interface board, DC regulated power supply, VXT parallel bus

 I/O MODES:

 Control Word:

MODE 0 – SIMPLE I/O MODE:

 This mode provides simple I/O operations for each of the three ports
and is suitable for synchronous data transfer. In this mode all the ports can be
configured either as input or output port.

Let us initialize port A as input port and port B as output port

PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, 90 Initialize port A
as Input and
Port B as
output.

4101

4102 OUT C6 Send Mode
Control word

4103

4104 IN C0 Read from Port
A

4105

4106 OUT C2 Display the
data in port B

4107

4108 STA 4200 Store the data
read from Port
A in 4200 4109

410A

410B HLT Stop the
program.

MODE1 STROBED I/O MODE:

 In this mode, port A and port B are used as data ports and port C is used as
control signals for strobed I/O data transfer.

 Let us initialize port A as input port in mode1

MAIN PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, B4 Initialize port A
as Input port in
mode 1. 4101

4102 OUT C6 Send Mode
Control word

4103

4104 MVI A,09 Set the PC4 bit
for INTE A

4105

4106 OUT C6 Display the
data in port B

4107

 EI

4108 MVI A,08 Enable RST5.5

4109

410A SIM

 EI

410B HLT Stop the
program.

ISR (Interrupt Service Routine)

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4200 START: IN C0 Read from port
A

4201

4202 STA 4500 Store in 4500.

4203

4204

4205 HLT Stop the
program.

Sub program:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

405E JMP 4200 Go to 4200

405F

4060

BSR MODE (Bit Set Reset mode)

 Any lines of port c can be set or reset individually without affecting other lines
using this mode. Let us set PC0 and PC3 bits using this mode.

PROGRAM:

ADDRESS OPCODES LABEL MNEMONICS OPERAND COMMENTS

4100 START: MVI A, 01 Set PC0

4101

4102 OUT C6 Send Mode
Control word

4103

4104 MVI A,07 Set PC3

4105

4106 OUT C6 Send Mode
Control word

4107

4109 HLT Stop the
program.

RESULT: Thus 8255 is interfaced and its characteristics in mode0,mode1 and
BSR mode is studied.

Ex No: 8(B)

Date:
2. INTERFACING 8253 TIMER WITH 8085

Interfacing 8253 Programmable Interval Timer with 8085 p
AIM:

To interface 8253 Interface board to 8085 p and verify the operation of 8253in

six different modes.

APPARATUS REQUIRED:

8085 p kit, 8253 Interface board, DC regulated power supply, VXT parallel
bus, CRO.
Mode 0 – Interrupt on terminal count:

The output will be initially low after mode set operations. After loading the

counter, the output will be remaining low while counting and on terminal count; the

output will become high, until reloaded again.

Let us set the channel 0 in mode 0. Connect the CLK 0 to the debounce circuit

by changing the jumper J3 and then execute the following program.

Program:

Address Opcodes Label Mnemonic Operands Comments

4100 START: MVI A, 30 Channel 0 in mode 0

4102 OUT CE Send Mode Control word

4104 MVI A, 05 LSB of count

4106 OUT C8 Write count to register

4108 MVI A, 00 MSB of count

410A OUT C8 Write count to register

410C HLT

It is observed in CRO that the output of Channel 0 is initially LOW. After giving six
clock pulses, the output goes HIGH.

Mode 1 – Programmable ONE-SHOT:

After loading the counter, the output will remain low following the rising edge

of the gate input. The output will go high on the terminal count. It is retriggerable;

hence the output will remain low for the full count, after any rising edge of the gate

input.

Example:

The following program initializes channel 0 of 8253 in Mode 1 and also initiates

triggering of Gate 0. OUT 0 goes low, as clock pulse after triggering the goes back to

high level after 5 clock pulses. Execute the program, give clock pulses through the

debounce logic and verify using CRO.

Address Opcodes Label Mnemonic Operands Comments

4100 START: MVI A, 32 Channel 0 in mode 1

4102 OUT CE Send Mode Control word

4104 MVI A, 05 LSB of count

4106 OUT C8 Write count to register

4108 MVI A, 00 MSB of count

410A OUT C8 Write count to register

410C OUT D0 Trigger Gate0

4100 HLT

Mode 2 – Rate Generator:

It is a simple divide by N counter. The output will be low for one period of the

input clock. The period from one output pulse to the next equals the number of input

counts in the count register. If the count register is reloaded between output pulses the

present period will not be affected but the subsequent period will reflect the new value.

Example:

Using Mode 2, Let us divide the clock present at Channel 1 by 10. Connect the

CLK1 to PCLK.

Address Opcodes Label Mnemonic Operands Comments

4100 3E 74 START: MVI A, 74 Channel 1 in mode 2

4102 D3 CE OUT CE Send Mode Control word

4104 3E 0A MVI A, 0A LSB of count

4106 D3 CA OUT CA Write count to register

4108 3E 00 MVI A, 00 MSB of count

410A D3 CA OUT CA Write count to register

410C 76 HLT

In CRO observe simultaneously the input clock to channel 1 and the output at Out1.

Mode 3 Square wave generator:

It is similar to Mode 2 except that the output will remain high until one half of

count and go low for the other half for even number count. If the count is odd, the

output will be high for (count + 1)/2 counts. This mode is used of generating Baud rate

for 8251A (USART).

Example:

We utilize Mode 0 to generate a square wave of frequency 150 KHz at channel

0.

Address Opcodes Label Mnemonic Operands Comments

4100 3E 36 START: MVI A, 36 Channel 0 in mode 3

4102 D3 CE OUT CE Send Mode Control word

4104 3E 0A MVI A, 0A LSB of count

4106 D3 C8 OUT C8 Write count to register

4108 3E 00 MVI A, 00 MSB of count

410A D3 C8 OUT C8 Write count to register

410C 76 HLT

Set the jumper, so that the clock 0 of 8253 is given a square wave of frequency 1.5

MHz. This program divides this PCLK by 10 and thus the output at channel 0 is 150

KHz.

 Vary the frequency by varying the count. Here the maximum count is FFFF H.

So, the square wave will remain high for 7FFF H counts and remain low for 7FFF H

counts. Thus with the input clock frequency of 1.5 MHz, which corresponds to a period

of 0.067 microseconds, the resulting square wave has an ON time of 0.02184

microseconds and an OFF time of 0.02184 microseconds.

 To increase the time period of square wave, set the jumpers such that CLK2 of

8253 is connected to OUT 0. Using the above-mentioned program, output a square

wave of frequency 150 KHz at channel 0. Now this is the clock to channel 2.

Mode 4: Software Triggered Strobe:

 The output is high after mode is set and also during counting. On terminal

count, the output will go low for one clock period and becomes high again. This mode

can be used for interrupt generation.

 The following program initializes channel 2 of 8253 in mode 4.

Example:

 Connect OUT 0 to CLK 2 (jumper J1). Execute the program and observe the
output OUT 2. Counter 2 will generate a pulse after 1 second.

Address Opcodes Label Mnemonic Operands Comments

4100 START: MVI A, 36 Channel 0 in mode 0

4102 OUT CE Send Mode Control word

4104 MVI A, 0A LSB of count

4106 OUT C8 Write count to register

4108 MVI A, 00 MSB of count

410A OUT C8 Write count to register

410C MVI A, B8 Channel 2 in Mode 4

410E OUT CE Send Mode control Word

4110 MVI A, 98 LSB of Count

4112 OUT CC Write Count to register

4114 MVI A, 3A MSB of Count

4116 OUT CC Write Count to register

4118 HLT

Mode 5 Hardware triggered strobe:

 Counter starts counting after rising edge of trigger input and output goes low for
one clock period when terminal count is reached. The counter is retrigger able.

Example:

The program that follows initializes channel 0 in mode 5 and also triggers Gate 0.
Connect CLK 0 to debounce circuit.

 Execute the program. After giving Six clock pulses, you can see using CRO,
the initially HIGH output goes LOW. The output (OUT 0 pin) goes high on the next
clock pulse.

Address Opcodes Label Mnemonic Operands Comments

4100 START: MVI A, 1A Channel 0 in mode 5

4102 OUT CE Send Mode Control word

4104 MVI A, 05 LSB of count

4106 OUT C8 Write count to register

4108 MVI A, 00 MSB of count

410A OUT D0 Trigger Gate 0

410C HLT

Result:

 Thus the 8253 has been interfaced to 8085 p and six different modes of 8253
have been studied.

Ex No: 9(A)

Date:
7.INTERFACING 8279 WITH 8085

AIM:

To interface 8279 Interface board to 8085 p and verify the operation of 8279.

APPARATUS REQUIRED :

8085 p kit, 8253 Interface board, DC regulated power supply.

INTERFACING DIAGRAM

The four steps needed to write the software are:

Step 1: Find keyboard/display command word.

Step 2: Find program clock command word

Step 3: Find Read FIFO RAM command word.

Step 4: Find Write FIFO RAM command word.

Source Program and Interrupt Service Routine

FLOWCHART:

SOURCE PROGRAM:

MVI A, 00H : Initialize keyboard/display in encoded

OUT 81H : scan keyboard 2 key lockout mode

MVI A, 34H

OUT 81H : Initialize prescaler count

 MVI A, 0BH

SIM

 EI

 HERE: JMP

 HERE : Wait for the
interrupt

INTERRUPT SERVICE ROUTINE

MVI A, 40H : Initialize 8279 in read FIFO RAM mode

OUT 81H

IN 80H : Get keycode

MVI H, 62H : Initialize memory pointer to point

MOV L, A : 7-Segment code

MVI A, 80H : Initialize 8279 in write display RAM mode

OUT 81H

MOV A, M : Get the 7 segment code

OUT 80H : Write 7-segment code in display RAM

EI : Enable interrupt

RET : Return to main program

RESULT:

Thus the 8279 has been interfaced to 8085 p and the operation of 8279 is

verified.

Ex No:9(B)

Date:

INTERFACING 8251 WITH 8085

AIM:

To interface 8251A Interface board to 8085 p and verify the operation of

8251A.

APPARATUS REQUIRED :

8085 p kit, 8251A Interface board, DC regulated power supply, RS232 cable.

INTERFACING DIAGRAM

TRANSMITTING THE DATA:

FLOWCHART

SOURCE PROGRAM:

LXI H, 2200H : Initialize memory pointer to pointer the message

MVI C, 32H : Initialize counter to send 50 characters

MVI A, 00H

OUT FFH

OUT FFH : Dummy mode word

OUT FFH

MVI A, 40H : Reset command word

OUT FFH : Reset 8251A

MVI A, CAH : Mode word initialization

OUT FFH

MVI A, 11H : Command word initialization

OUT FFH

CHECK: IN FFH

ANI 0lH : Check TxRDY

JZ CHECK : Is TxRDY I? if not, check again

MOV A, M : Get the character in accumulator

OUT FEH : Send character to the transmitter

INX H : Increment memory pointer

DCR C : Decrement counter

JNZ CHECK : if not zero, send next character

HLT : Stop program execution

RECEIVING THE DATA

FLOWCHART

SOURCE PROGRAM:

LXI H, 2300 H : Initialize memory pointer

MVI C, FFH : Initialize counter to accept 25 characters

MVI A, 00H

OUT FFH

OUT FFH : Dummy mode word

OUT FFH

MVI A, 40H : Reset command word

OUT FFH : Reset 8251 A

MVI A, CAH : Mode word initialization

OUT FFH

MVI A, 14 H : Command word initialization

OUT FFH

CHECK: IN FFH

ANI 02 H : Check RxRDY

JZ CHECK : Is RxRDY ? If not, check again

IN FEH : Get the character

MOV M, A : save the character

INX H : Increment memory pointer

DCR C : Decrement memory pointer

OUT FEH : Send character to the transmitter

JNZ CHECK : If not zero, accept next character

HLT : Stop program execution

Note: Reading of status word is necessary for checking the status of RxD line
of 8085 that whether receiver is ready to give data or not.

RESULT:

Thus the 8251A has been interfaced to 8085 p and the operation of 8251A is verified.

Ex No:10
Date:

8051 MICROCONTROLLER BASED EXPERIMENTS – SIMPLE ASSEMBLY
LANGUAGE PROGRAMS

 (8051 BASIC PROGRAMMING)
Aim:

To program 8051 using its Arithmetic and Logical and Bit Manipulation

instructions.

a) Arithmetic operations
 Address Label Mnemonics Machine Code Comments
 MOV DPTR, #8500

 MOVX A, @DPTR

 MOV B, A

 MOV R0, A

 INC DPTR

 MOVX A, @DPTR

 MOV R1, A

 ADD A, B

 INC DPTR

 MOVX @DPTR, A

 MOV R2, A

 MOV A, R1

 SUBB A, B

 INC DPTR

 MOVX @DPTR, A

 MOV R3, A

 MOV B, R2

 MUL AB

INC DPTR

MOVX @DPTR, A

MOV A, R2

MOV B, R3

DIV AB

INC DPTR

MOVX @DPTR, A

LCALL 00BB

Input: M8500 - a

M8501 - b

Output: M8502 : sum (a+b)

M8503: difference (a-b)

M8504: Product ((a+b)×(a-b))

M8505: Quotient ((a+b)/(a-b))

b) 32 bit subtraction

Address Label Mnemonics Machine Code Comments
 CLR C

 MOV A, 43

 SUBB A, 53

 MOV 63, A

 MOV A, 42

 SUBB A, 52

 MOV 62, A

 MOV A, 41

 SUBB A, 51

 MOV 61, A

 MOV A, 40

 SUBB A, 50

 MOV 60, A

 LCALL 00BB

Input: I40 to 43 – data 1

I50 to 53 – data 2

Output: I60 to 63 – difference

C) Fibonacci series

 Address Label Mnemonics Machine Code Comments
 MOV R0, 60

 MOV R1, #01

 MOV R2, #01

 MOV A, #00

 MOV DPTR, # 9000

 CJNE R0, #00, BEGIN

 LJMP EXIT

 BEGIN: MOVX @DPTR, A

 INC DPTR

 RPT: MOV R2, A

 ADD A, R1

 MOV 01, 02

 MOVX @DPTR, A

INC DPTR

DJNZ R0, RPT

EXIT:
LCALL 00BB

INPUT: I60 – COUNT

M9003 – 02 & so on…

OUTPUT: M9000– 00

M9001 – 01

M9002 – 01

Ex No:11

Date:

8051 MICROCONTROLLER BASED EXPERIMENTS – SIMPLE CONTROL
APPLICATIONS

STEPPER MOTOR INTERFACING WITH 8051
AIM:

To interface a stepper motor with 8051 microcontroller and operate it.

APPARATUS REQUIRED:
i) 8051 microcontroller kit.
ii) Stepper motor

THEORY:
A motor in which the rotor is able to assume only discrete stationary angular position

is a stepper motor. The rotary motion occurs in a step- wise manner from one equilibrium

position to the next. Stepper Motors are used very wisely in position control systems like

printers, disk drives, process control machine tools, etc.

The basic two-phase stepper motor consists of two pairs of stator poles. Each of the

four poles has its own winding. The excitation of any one winding generates a North Pole. A

South Pole gets induced at the diametrically opposite side. The rotor magnetic system has two

end faces. It is a permanent magnet with one face as South Pole and the other as North Pole.

The Stepper Motor windings A1, A2, B1, B2 are cyclically excited with a DC current

to run the motor in clockwise direction. By reversing the phase sequence as A1, B2, A2, B1,

anticlockwise stepping can be obtained.

2-PHASE SWITCHING SCHEME:

In this scheme, any two adjacent stator windings are energized. The switching

scheme is shown in the table given below. This scheme produces more torque.

ANTICLOCKWISE CLOCKWISE

STEP A1 A2 B1 B2 DATA STEP A1 A2 B1 B2 DATA
1 1 0 0 1 9h 1 1 0 1 0 Ah
2 0 1 0 1 5h 2 0 1 1 0 6h
3 0 1 1 0 6h 3 0 1 0 1 5h
4 1 0 1 0 Ah 4 1 0 0 1 9h

ADDRESS DECODING LOGIC:

The 74138 chip is used for generating the address decoding logic to generate the

device select pulses, CS1 & CS2 for selecting the IC 74175.The 74175 latches the data bus to

the stepper motor driving circuitry.

Stepper Motor requires logic signals of relatively high power. Therefore, the interface circuitry

that generates the driving pulses use silicon darlington pair transistors. The inputs for the interface

circuit are TTL pulses generated under software control using the Microcontroller Kit. The TTL

levels of pulse sequence from the data bus is translated to high voltage output pulses using a buffer

7407 with open collector.

PROGRAM :

Address OPCODES Label Comments

 ORG 4100h

4100 START: MOV DPTR, #TABLE Load the start
 address of switching
 scheme data TABLE
 into Data Pointer
 (DPTR)

4103 MOV R0, #04 Load the count in R0
4105 LOOP: MOVX A, @DPTR Load the number in

 TABLE into A
4106 PUSH DPH Push DPTR value to
4108 PUSH DPL Stack
410A MOV DPTR, #0FFC0h Load the Motor port

 address into DPTR
410D MOVX @DPTR, A Send the value in A

 to stepper Motor port
 address

410E MOV R4, #0FFh Delay loop to cause
4110 DELAY MOV R5, #0FFh a specific amount of

 : time delay before

next data item is sent 4112 DELAY DJNZ R5, DELAY1
 1: to the Motor

4114 DJNZ R4, DELAY
4116 POP DPL POP back DPTR
4118 POP DPH value from Stack
411A INC DPTR Increment DPTR to

 point to next item in
 the table

411B DJNZ R0, LOOP Decrement R0, if not
 zero repeat the loop

411D SJMP START Short jump to Start
 of the program to
 make the motor
 rotate continuously

411F TABLE: DB 09 05 06 0Ah Values as per two-
 phase switching
 scheme

PROCEDURE:

Enter the above program starting from location 4100.and execute the same.

The stepper motor rotates. Varying the count at R4 and R5 can vary the speed.

Entering the data in the look-up TABLE in the reverse order can vary direction of

rotation.

RESULT:

Thus a stepper motor was interfaced with 8051 and run in forward and reverse
directions at various speeds.

